1,627 research outputs found

    Integration of disease-specific single nucleotide polymorphisms, expression quantitative trait loci and coexpression networks reveal novel candidate genes for type 2 diabetes.

    Get PDF
    Aims/hypothesisWhile genome-wide association studies (GWASs) have been successful in identifying novel variants associated with various diseases, it has been much more difficult to determine the biological mechanisms underlying these associations. Expression quantitative trait loci (eQTL) provide another dimension to these data by associating single nucleotide polymorphisms (SNPs) with gene expression. We hypothesised that integrating SNPs known to be associated with type 2 diabetes with eQTLs and coexpression networks would enable the discovery of novel candidate genes for type 2 diabetes.MethodsWe selected 32 SNPs associated with type 2 diabetes in two or more independent GWASs. We used previously described eQTLs mapped from genotype and gene expression data collected from 1,008 morbidly obese patients to find genes with expression associated with these SNPs. We linked these genes to coexpression modules, and ranked the other genes in these modules using an inverse sum score.ResultsWe found 62 genes with expression associated with type 2 diabetes SNPs. We validated our method by linking highly ranked genes in the coexpression modules back to SNPs through a combined eQTL dataset. We showed that the eQTLs highlighted by this method are significantly enriched for association with type 2 diabetes in data from the Wellcome Trust Case Control Consortium (WTCCC, p = 0.026) and the Gene Environment Association Studies (GENEVA, p = 0.042), validating our approach. Many of the highly ranked genes are also involved in the regulation or metabolism of insulin, glucose or lipids.Conclusions/interpretationWe have devised a novel method, involving the integration of datasets of different modalities, to discover novel candidate genes for type 2 diabetes

    Coanalysis of GWAS with eQTLs reveals disease-tissue associations.

    Get PDF
    Expression quantitative trait loci (eQTL), or genetic variants associated with changes in gene expression, have the potential to assist in interpreting results of genome-wide association studies (GWAS). eQTLs also have varying degrees of tissue specificity. By correlating the statistical significance of eQTLs mapped in various tissue types to their odds ratios reported in a large GWAS by the Wellcome Trust Case Control Consortium (WTCCC), we discovered that there is a significant association between diseases studied genetically and their relevant tissues. This suggests that eQTL data sets can be used to determine tissues that play a role in the pathogenesis of a disease, thereby highlighting these tissue types for further post-GWAS functional studies

    Transport infrastructure shapes foraging habitat in a raptor community

    Full text link
    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors ' foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors' response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorwaysAP was supported by a PhD grant of the Basque Government. This study forms part of the CENIT-OASIS Project funded by a consortium of companies supported by the Centro para el Desarrollo Tecnológico e Industrial of the Spanish Ministry of Science and Innovation (CENIT-2008 1016). The Comunidad de Madrid, together with the European Social Fund, supports the TEG research group through the REMEDINAL Research Network (S-2009/AMB/1783). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscri

    The Quantitative Genetics of Phenotypic Robustness

    Get PDF
    Phenotypic robustness, or canalization, has been extensively investigated both experimentally and theoretically. However, it remains unknown to what extent robustness varies between individuals, and whether factors buffering environmental variation also buffer genetic variation. Here we introduce a quantitative genetic approach to these issues, and apply this approach to data from three species. In mice, we find suggestive evidence that for hundreds of gene expression traits, robustness is polymorphic and can be genetically mapped to discrete genomic loci. Moreover, we find that the polymorphisms buffering genetic variation are distinct from those buffering environmental variation. In fact, these two classes have quite distinct mechanistic bases: environmental buffers of gene expression are predominantly sex-specific and trans-acting, whereas genetic buffers are not sex-specific and often cis-acting. Data from studies of morphological and life-history traits in plants and yeast support the distinction between polymorphisms buffering genetic and environmental variation, and further suggest that loci buffering different types of environmental variation do overlap with one another. These preliminary results suggest that naturally occurring polymorphisms affecting phenotypic robustness could be abundant, and that these polymorphisms may generally buffer either genetic or environmental variation, but not both

    Statistical power of phylo-HMM for evolutionarily conserved element detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important goal of comparative genomics is the identification of functional elements through conservation analysis. Phylo-HMM was recently introduced to detect conserved elements based on multiple genome alignments, but the method has not been rigorously evaluated.</p> <p>Results</p> <p>We report here a simulation study to investigate the power of phylo-HMM. We show that the power of the phylo-HMM approach depends on many factors, the most important being the number of species-specific genomes used and evolutionary distances between pairs of species. This finding is consistent with results reported by other groups for simpler comparative genomics models. In addition, the conservation ratio of conserved elements and the expected length of the conserved elements are also major factors. In contrast, the influence of the topology and the nucleotide substitution model are relatively minor factors.</p> <p>Conclusion</p> <p>Our results provide for general guidelines on how to select the number of genomes and their evolutionary distance in comparative genomics studies, as well as the level of power we can expect under different parameter settings.</p

    Evolving toward a human-cell based and multiscale approach to drug discovery for CNS disorders

    Get PDF
    A disruptive approach to therapeutic discovery and development is required in order to significantly improve the success rate of drug discovery for central nervous system (CNS) disorders. In this review, we first assess the key factors contributing to the frequent clinical failures for novel drugs. Second, we discuss cancer translational research paradigms that addressed key issues in drug discovery and development and have resulted in delivering drugs with significantly improved outcomes for patients. Finally, we discuss two emerging technologies that could improve the success rate of CNS therapies: human induced pluripotent stem cell (hiPSC)-based studies and multiscale biology models. Coincident with advances in cellular technologies that enable the generation of hiPSCs directly from patient blood or skin cells, together with methods to differentiate these hiPSC lines into specific neural cell types relevant to neurological disease, it is also now possible to combine data from large-scale forward genetics and post-mortem global epigenetic and expression studies in order to generate novel predictive models. The application of systems biology approaches to account for the multiscale nature of different data types, from genetic to molecular and cellular to clinical, can lead to new insights into human diseases that are emergent properties of biological networks, not the result of changes to single genes. Such studies have demonstrated the heterogeneity in etiological pathways and the need for studies on model systems that are patient-derived and thereby recapitulate neurological disease pathways with higher fidelity. In the context of two common and presumably representative neurological diseases, the neurodegenerative disease Alzheimer’s Disease (AD), and the psychiatric disorder schizophrenia (SZ), we propose the need for, and exemplify the impact of, a multiscale biology approach that can integrate panomic, clinical, imaging, and literature data in order to c

    Magnitude of Stratification in Human Populations and Impacts on Genome Wide Association Studies

    Get PDF
    Genome-wide association studies (GWAS) may be biased by population stratification (PS). We conducted empirical quantification of the magnitude of PS among human populations and its impact on GWAS. Liver tissues were collected from 979, 59 and 49 Caucasian Americans (CA), African Americans (AA) and Hispanic Americans (HA), respectively, and genotyped using Illumina650Y (Ilmn650Y) arrays. RNA was also isolated and hybridized to Agilent whole-genome gene expression arrays. We propose a new method (i.e., hgdp-eigen) for detecting PS by projecting genotype vectors for each sample to the eigenvector space defined by the Human Genetic Diversity Panel (HGDP). Further, we conducted GWAS to map expression quantitative trait loci (eQTL) for the ∼40,000 liver gene expression traits monitored by the Agilent arrays. HGDP-eigen performed similarly to the conventional self-eigen methods in capturing PS. However, leveraging the HGDP offered a significant advantage in revealing the origins, directions and magnitude of PS. Adjusting for eigenvectors had minor impacts on eQTL detection rates in CA. In contrast, for AA and HA, adjustment dramatically reduced association findings. At an FDR = 10%, we identified 65 eQTLs in AA with the unadjusted analysis, but only 18 eQTLs after the eigenvector adjustment. Strikingly, 55 out of the 65 unadjusted AA eQTLs were validated in CA, indicating that the adjustment procedure significantly reduced GWAS power. A number of the 55 AA eQTLs validated in CA overlapped with published disease associated SNPs. For example, rs646776 and rs10903129 have previously been associated with lipid levels and coronary heart disease risk, however, the rs10903129 eQTL was missed in the eigenvector adjusted analysis

    Meta-analysis of Inter-species Liver Co-expression Networks Elucidates Traits Associated with Common Human Diseases

    Get PDF
    Co-expression networks are routinely used to study human diseases like obesity and diabetes. Systematic comparison of these networks between species has the potential to elucidate common mechanisms that are conserved between human and rodent species, as well as those that are species-specific characterizing evolutionary plasticity. We developed a semi-parametric meta-analysis approach for combining gene-gene co-expression relationships across expression profile datasets from multiple species. The simulation results showed that the semi-parametric method is robust against noise. When applied to human, mouse, and rat liver co-expression networks, our method out-performed existing methods in identifying gene pairs with coherent biological functions. We identified a network conserved across species that highlighted cell-cell signaling, cell-adhesion and sterol biosynthesis as main biological processes represented in genome-wide association study candidate gene sets for blood lipid levels. We further developed a heterogeneity statistic to test for network differences among multiple datasets, and demonstrated that genes with species-specific interactions tend to be under positive selection throughout evolution. Finally, we identified a human-specific sub-network regulated by RXRG, which has been validated to play a different role in hyperlipidemia and Type 2 diabetes between human and mouse. Taken together, our approach represents a novel step forward in integrating gene co-expression networks from multiple large scale datasets to leverage not only common information but also differences that are dataset-specific

    Genetic and Genomic Analysis of a Fat Mass Trait with Complex Inheritance Reveals Marked Sex Specificity

    Get PDF
    The integration of expression profiling with linkage analysis has increasingly been used to identify genes underlying complex phenotypes. The effects of gender on the regulation of many physiological traits are well documented; however, “genetical genomic” analyses have not yet addressed the degree to which their conclusions are affected by sex. We constructed and densely genotyped a large F2 intercross derived from the inbred mouse strains C57BL/6J and C3H/HeJ on an apolipoprotein E null (ApoE(−/−)) background. This BXH.ApoE(−/−) population recapitulates several “metabolic syndrome” phenotypes. The cross consists of 334 animals of both sexes, allowing us to specifically test for the dependence of linkage on sex. We detected several thousand liver gene expression quantitative trait loci, a significant proportion of which are sex-biased. We used these analyses to dissect the genetics of gonadal fat mass, a complex trait with sex-specific regulation. We present evidence for a remarkably high degree of sex-dependence on both the cis and trans regulation of gene expression. We demonstrate how these analyses can be applied to the study of the genetics underlying gonadal fat mass, a complex trait showing significantly female-biased heritability. These data have implications on the potential effects of sex on the genetic regulation of other complex traits

    Genome-Wide Significant Loci: How Important Are They? Systems Genetics to Understand Heritability of Coronary Artery Disease and Other Common Complex Disorders

    Get PDF
    AbstractGenome-wide association studies (GWAS) have been extensively used to study common complex diseases such as coronary artery disease (CAD), revealing 153 suggestive CAD loci, of which at least 46 have been validated as having genome-wide significance. However, these loci collectively explain <10% of the genetic variance in CAD. Thus, we must address the key question of what factors constitute the remaining 90% of CAD heritability. We review possible limitations of GWAS, and contextually consider some candidate CAD loci identified by this method. Looking ahead, we propose systems genetics as a complementary approach to unlocking the CAD heritability and etiology. Systems genetics builds network models of relevant molecular processes by combining genetic and genomic datasets to ultimately identify key “drivers” of disease. By leveraging systems-based genetic approaches, we can help reveal the full genetic basis of common complex disorders, enabling novel diagnostic and therapeutic opportunities
    corecore